

Mobile Accelerator SDK
Version 20.1.2

Android Integration Guide

1 Summary

2 Introduction

3 Getting Started
3.1 Requirements and Dependencies
3.2 Installing the Android SDK

4 Integration with your Android Application
4.1 Initialization
4.2 Updating segment subscription
4.3 Integrating with Firebase App

5 API Reference
5.1 Using SDK with Android HttpsUrlConnection/HttpUrlConnection
5.2 Using SDK with WebViews
5.3 Using SDK with Third party HTTP client wrappers

OkHttp
Retrofit - Version 1
Retrofit - Version 2
Picasso

5.4 Custom Event Tracking
Examples

5.5 Network Aware Experience
5.6 Customer Pinned Certificates
5.7 Debugging APIs
5.8 Using SDK’s AkaURLStreamHandler
5.9 Cache-Control request parameters

6 QUIC Library Integration
ABI Management for different architectures

7 BROTLI Library Integration

8 mPulse Library Integration

10 Managing Cookies

9 Appendix - Requirements and Dependencies

9.1 Background Execution
9.2 SDK Events
9.3 SDK Debugging
9.4 Upgrading from a previous SDK version to 20.1.1 or later

1 Summary

This document details the process of integrating MAP SDK with your Android application to accelerate
web traffic.

2 Introduction
The SDK internally takes care of pre-positioning the content based on user preferences and policies set
up between client and server. SDK provides APIs (networking libraries) to be used by developers that
takes care of acceleration and stats collection.

The SDK provides API for developers to access real time network conditions such as congestion state.
This information can be used to augment user experience by taking necessary action based on network
state.

In addition, SDK also provides APIs for logging user events which could be used to associate traffic
originated from the app with events such as the click of a button.

3 Getting Started
There are primarily two ways of accessing content over the network. One of the most common ways is to
use standard HTTP libraries such as ​HttpURLConnection​.By default, after successful initialization SDK
intercepts all the HttpUrlConnection and HttpsUrlConnection requests.

Another way to access content over the network in an app is through WebViews. SDK provides an API for
developers which delegates all network-related requests originating from WebViews to the ​MAP SDK.

The ​SDK ​ also collects network-related statistics (such as HTTP time to first byte, request size, response
size, duration etc.) alongside serving content. These stats are sent periodically to a server and can be
later accessed via portal.

3.1 Requirements and Dependencies
The SDK supports API 15​ and above

3.2 Installing the Android SDK
Download the SDK and unzip it.

In a file explorer (​not​ Android Studio), drag the unzipped map-​sdk-​version​.aar​ file into the /app/libs
directory in your project’s root directory.

In Android Studio, edit the build.gradle file in the ​app​ directory (​not the one in the root folder ​) and edit the
dependencies sub-section to include .AAR file and following libraries:

useLibrary ​'org.apache.http.legacy'

dependencies {

 i​mplementation ​fileTree(dir: 'libs', include: ['*.jar'])
 implementation ​'com.google.firebase:firebase-messaging:17.3.4'
 implementation ​'com.android.support:support-v4:26.1.0'
 implementation ​(name:'map-sdk-version', ext:'aar')
}

Or use the direct maven dependency from ​jcenter()

implementation ​'com.akamai.android:map-sdk:<version>@aar'

Note : You will need to add google maven repo(for ​support-v4:26.1.0)​ ​ in the project’s root build.gradle also

Example :

allprojects {
 repositories {
 mavenCentral()
 jcenter()
 google()
 }
}

For Apps that target Android P
<uses-library android:name="org.apache.http.legacy" android:required="false"/> is needed in AndroidManifest.xml

MAP SDK version 20.1.1 and later has been updated to use Firebase Messaging as Google has

deprecated GCM. If you are updating from a previous version of SDK to version 20.1.1 or later, please

make sure to update the app’s build.gradle file with firebase-messaging dependency as above . Remove

the GCM dependency and add the FCM as suggested above. For additional information on getting

background notifications working for prepositioning follow section 4.3

Updating your Android Manifest
Client AndroidManifest.xml will need to be updated in order to complete the SDK integration.

<​application
….

<provider

android​:​name​=​"com.akamai.android.sdk.db.AnaContentProvider"
<!-- <​your_package_name> ​Refers to unique package id of the app -->
android​:​authorities​=​"<your_package_name>.AnaContentProvider"​ >
</provider>

<!-- Refers to sdk init file in res/xml/​ ​-->

<​meta-data

android:name="com.akamai.android.sdk"

android:resource="@xml/akamai_sdk_init" />

….

</​application​>

Creating the SDK initialization file referred in the manifest

The SDK uses an xml file to look up the license keys and other information to authorize the client app.
This information is stored in a file android_sdk_init.xml in the client app’s resources folder. The sample file
is shown below.

In …./main/res/xml (create if it doesn’t exist!) folder, add a new file android_sdk_init.xml.

<?xml version="1.0" encoding="utf-8"?>
<com_akamai_sdk_init>
<!-- SDK license key created on portal-->

<​com_akamai_sdk_license_key​></​com_akamai_sdk_license_key​>
<!-- In case of MAP license, this is comma separated list of segments to register with
(optional)-->
<​com_akamai_sdk_segments​></​com_akamai_sdk_segments​>
<!--Regional info (optional)-->
<​com_akamai_sdk_region​></​com_akamai_sdk_region​>
<!--SDK user id specified by the app (optional)-->
<​com_akamai_sdk_sdk_user_id​></​com_akamai_sdk_sdk_user_id​>

 </com_akamai_sdk_init>

The SDK requires these permissions for full functionality:

<manifest . . . >

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 <uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

 <uses-permission android:name="com.google.android.c2dm.permission.RECEIVE" />

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

</manifest>

4 Integration with your Android Application

4.1 Initialization
The first step on app start would be to just create an instance of VocService using
VocService.createInstance (Context applicationContext) which initializes and registers the sdk with
parameters provided in android_sdk_init.xml. This should be done on main application create or onCreate
of the main activity.

// Create a VocService instance

VocService vocService = VocService.createVocService(getApplicationContext());

Once initialized, any content listed in the subscribed segments automatically starts getting prepositioned
based on network policy(wifi/cellular) defined.

4.2 Updating segment subscription
The list of subscribed segments may be changed any time after registration. Pass an array of

segment names to the VOC service call ​updateSegmentSubscription​.

/**

* API method to update segment subscription once registered. Multiple calls to this API

would update previous subscription.

* Note - Changes to the subscription are not reflected immediately and are stored in a

persistent storage.

* SDK notifies server about any changes (if any) during next sync with server.

* This method is not synchronized and caller must ensure the sequence if called multiple

times.

* ​@param ​segments ​- Array containing segment names. Passing an ​empty array​ would clear all
segment subscriptions including current ones.

*/

public ​VocServiceResult ​updateSegmentSubscription​(​@NonNull ​final ​String []segments)

4.3 Integrating with Firebase Cloud Messaging
MAP SDK uses Firebase Cloud notifications to mainly sync prepositioning content and sdk
config in background, ​If the app does not have a need for prepositioning content in
background then this step is optional​.

In order for FCM background notifications to work - follow the firebase messaging integration
guide as documented at Google Firebase website(​https://console.firebase.google.com​) . After
firebase is integrated in the app, complete the following two steps:

1. Add/Update the server api key to the portal for the required app. The server api key could be
found on the firebase console project settings as shown below.

https://console.firebase.google.com/

Then add/update the key to MAP SDK license portal in the “Google FCM Key” field on MAP
Portal as shown below. The API Key is used by MAP Control Server to trigger map related
notifications - for prepositioning any content configured for the app .

2. The app needs to provide hooks in its implementation of its FirebaseMessagingService to
pass the messages to SDK. A returned ‘true’ value means the message was meant for the MAP
SDK and the app doesn’t need to do any further processing on it. A ‘false’ is returned if it is not
a MAP SDK message. An example is included below:

public class AppFirebaseMessagingService extends FirebaseMessagingService {

 @Override

 public void onMessageReceived(RemoteMessage message) {

 // If handleFirebaseMessage returns true, the message is for map sdk.

 if (VocService.createVocService(getApplicationContext())

 .handleFirebaseMessage(message)) {

 return;

 }

 // Handling for app messages.

 ...

 }

 @Override

 public void onNewToken(String newToken) {

 VocService.createVocService(getApplicationContext()).updateFirebaseToken(newToken);

 // App handling for tokens.

 ...

 }

}

5 API Reference
In this section, we see examples of how to use APIs provided by the SDK.

5.1 Using SDK with Android HttpsUrlConnection/HttpUrlConnection

By default, after successful initialization SDK intercepts all the HttpUrlConnection and HttpsUrlConnection
requests. There is no additional code change required by the application. ​SDK intercepts these requests
by settin​g ​a global URLStreamHandlerFactory. ​All the ​relevant network statistics related to each
request will be captured by the SDK.

5.2 Using SDK with ​WebViews
In order to accelerate traffic originated from WebViews, the SDK provides following custom
WebViewClient.
AkaWebViewL21Client​ - For Android API level 21 and above.
AkaWebViewL15Client​ - For Android API level 15 and above.

Both WebViewClients delegate all network calls via the MAP SDK library internally. The only difference
between the two is that the L21 WebViewClient uses newer APIs added in level 21 and above.
The caller can use the appropriate client depending on API level as follows:

WebView​ webView;
...

if​ ​(​Build​.​VERSION​.​SDK_INT ​>=​ ​21​)​ {
 webView​.​setWebViewClient​(​new​ ​AkaWebViewL21Client​());

}​ ​else​ {
 webView​.​setWebViewClient​(​new​ ​AkaWebViewL15Client​());
}

Note - Currently, both WebViewClients do not handle POST requests as there is no API provided by
Android platform to access POST data.

5.3 Using SDK with ​Third party HTTP client wrappers

In order to accelerate traffic originating from Third party http clients like Okhttp, Retrofit, Picasso,
an interceptor needs to be added to the request. Sample interceptor classes for all these
libraries have been added in the wrappers folder of the voc accelerator example.
Note : SDK has to be registered successfully for the wrappers to work as expected.

OkHttp
An interceptor for OkHttp needs to be added to the OkHttpClient.Builder as below

OkHttpClient client = ​new ​OkHttpClient.Builder()
 .addInterceptor(​new ​AkaOkHttpInterceptor())
 .build();

Request request = ​new ​Request.​Builder​()
 .url(uri)

 .build();

Response response = client.newCall(request).execute();

Retrofit - Version 1
An interceptor for Retrofit needs to be added to the RestAdapter class as below

RestAdapter.Builder builder =

 ​new ​RestAdapter.Builder()
 .setEndpoint(MapUrlTestMockedServer.HTTPSHOST)

 .setClient(​new ​AkaRetrofitClient​(getContext()));
RestAdapter adapter = builder.build();

RetrofitApi api = adapter.create(RetrofitApi.​class​);

Retrofit - Version 2
An interceptor for Retrofit 2 needs to be added as the client to retrofit as shown below

Retrofit retrofit = ​new ​Retrofit.Builder()
 .baseUrl(uri)

 .addConverterFactory(GsonConverterFactory.​create​())
 .client(AkaRetrofit2Client.​getClient​())
 .build();

Retrofit2Api client = retrofit.create(Retrofit2Api.​class​);
Call<ResponseBody> call = client.get(​path​);

Picasso
An interceptor for Picasso needs to be added to the Picasso.Builder as below

Picasso picasso = ​new ​Picasso.Builder(getContext())
 .downloader(​new ​AkaPicassoDownloader(getContext()))
 .build();

Picasso.​setSingletonInstance​(picasso);

5.4 Custom Event Tracking
Custom events are actions triggered due to some activity performed by the end user, such as a button
click. The SDK provides APIs that are helpful for developers to clock one or more custom events.

We classify events as timed and instantaneous events. Timed events are ones that have a start and an
end point associated with them. Apart from clocking the duration between start and stop, such events can
be used to determine network calls originated between start and stop. Please ensure not to add any data
to the event name that has privacy implications.

/**

*​ API method to track timed events​.​ ​Caller​ must call ​{​@link​ ​#stopEvent(String)} to mark an
event as complete.

*​ ​@param​ eventName ​Name​ of the ​event​ to track​.​ ​Same​ name should be used ​for​ ​{​@link
#stopEvent(String)}

*/

public​ ​void​ startEvent​(​String​ eventName​);

/**

*​ API method to track timed events​.​ ​Caller​ must call ​{​@link​ ​#startEvent(String)} before
calling this method.

*​ ​@param​ eventName ​Name​ of the ​event​ used during ​{​@link​ ​#startEvent(String)}
*/

public​ ​void​ stopEvent​(​String​ eventName​);

Instantaneous events, unlike timed events, do not have a start and stop associated with them. Such
events can be used to log a set of sequence or form a timeline of operations. Note that instantaneous
events are in Tech Preview and are not yet displayed in the portal.

/**

*​ API method to track instantaneous events.
*​ ​@param​ eventName ​Name​ of the ​event​ to track.
*/

public​ ​void​ logEvent​(​String​ eventName​);

Examples
Sample usage of above webview and user events API.

VocService​ vocService​;
...

vocService​.​logEvent​(​"Initialization"​);
...

vocService​.​logEvent​(​"Clicked XYZ.com"​);
String​ url ​=​ ​"http://www.xyz.com/abc.html";
WebView​ webView;
...

webView​.​setWebViewClient​(​new​ ​AkaWebViewL21Client​()​ {
 @Override

 public​ ​void​ onPageStarted​(​WebView​ view​,​ ​String​ url​,​ ​Bitmap​ favicon​)​ {
 super​.​onPageStarted​(​view​,​ url​,​ favicon​);

 // url loading started.

 vocService​.​startEvent​(​url​);
 }

 @Override

 public​ ​void​ onPageFinished​(​WebView​ view​,​ ​String​ url​)​ {
 super​.​onPageFinished​(​view​,​ url​);

 // url loading finished.

 vocService​.​stopEvent​(​url​);
 }

});

5.5 Network Aware Experience
The SDK provides APIs that helps a developer to access client side network quality state to augment
client request.

For example - Load the absolute minimum needed for a particular user event. The example below shows
how loading of a web page can be tweaked based on network quality state.

VocService​ vocService;
...

int​ networkQualityState ​=​ vocService​.​getNetworkQuality​();

switch​(​networkQualityState​)​ {
 case​ ​VocNetworkQualityStatus​.​POOR:
 // load a webpage with no images.

 break;

 case​ ​VocNetworkQualityStatus​.​GOOD:
 // Load a webpage with medium quality images.

 break;

 case​ ​VocNetworkQualityStatus​.​EXCELLENT:
 // Download content.

 break;

}

5.6 Customer Pinned Certificates

The sdk can be configured to use pinned certificates (SSL Socket Factory) and/or custom
hostname verifiers to download prepositioned content. The certificates and hostname verifier

can be configured on a per host basis and should be done before registering since the content
starts downloading automatically after registration is successful. If configured, the sdk will use
the authentication parameters while connecting to host part in the prepositioned url.

// Create a VocService instance

VocService vocService = VocService.createVocService(getApplicationContext());

MapConnectionParameters parameters = new MapConnectionParameters();

paramaters.setSSLSocketFactory(yourCustomSocketFactory);
parameters.setHostnameVerifier(yourCustomHostnameVerifier);

vocService.setCustomConnectionParameters(“​www.akamai.com​”, parameters);

5.7 Debugging APIs
SDK provides APIs for developers to debug requests made through SDK. There are two logging
levels supported viz. ​DEBUG​ and ​INFO​. ​INFO ​is the default logging mode and contains logging
with minimal output. ​DEBUG​ on the other hand is the enhanced logging mode. Logging levels
can be changed at the runtime and is not persisted through multiple app sessions. All the APIs
are supported through ​Logger.java​ class.

public enum ​LEVEL {
 ​/**
 * The default logging mode. This is the production level with minimal output.
 */
 ​INFO​,
 ​/**
 * The enhanced logging mode for DEBUGGING purposes only.
 */
 ​DEBUG
}

/**

*

* ​@param ​level ​defines the SDK logging level.
* The default level is LEVEL.INFO. This is the production level with minimal

output.

* LEVEL.DEBUG is enhanced logging mode for DEBUGGING purposes only.

* Also see, {​@link ​Logger.LEVEL}

http://www.akamai.com/

*/

public static void ​setLevel(LEVEL level)

/**
*
* ​@param ​ctx
* ​@throws ​Exception​ if current log level is not set to LEVEL.DEBUG.
*/
public static void ​logCurrentConfiguration(Context ctx) ​throws ​Exception

/**
* Logs content corresponding to all the segments.
* ​@param ​ctx
 throws ​Exception​ if current log level is not set to LEVEL.DEBUG.
*/
public static void ​logExistingContent(Context ctx) ​throws ​Exception

Sample Debug Logs when ​Logger.​setLevel​(Logger.LEVEL.​DEBUG​);

Content Served from network

D/AkaSDKLogger: AkaURLConnection: Stats: URL: https://www.akamai.com/, Type:
CACHE_MISS, Connection: cellular/LTE, RespCode: 200, ContentLength: 251167, StartTime:
1523471453095, Duration: 670, Ttfb: 618

Content served from Cache

D/AkaSDKLogger: D/AkaSDKLogger: AkaURLConnection: Stats: URL:
https://www.akamai.com/, Type: CACHE_FETCH_ADHOC, Connection: cellular/LTE,
RespCode: 200, ContentLength: 251167, StartTime: 1523471307223, Duration: 55, Ttfb: 6
On receiving Push notification

04-11 14:59:36.651 31167-31192/example.com.vocaccelerator D/AkaSDKLogger:
AnaCacheService: com.akamai.anaina.PREPARE_SYNC
04-11 14:59:36.651 31167-31192/example.com.vocaccelerator D/AkaSDKLogger:
AnaCacheService: Prepare sync cache request
0

5.8 Using SDK’s AkaURLStreamHandler

If the application or a library within the app is setting its own global ​URLStreamHandlerFactory, then
sdk provides a solution where ​developers can use ​AkaURLStreamHandler ​ for specific requests that need
to be handled by MAP

final​ ​String​ uri ​=​ ​"http://www.bestbuy.com/";

//Before

URL url ​=​ ​new​ URL​(​uri​);

//After

URL url ​=​ ​new​ URL​(​null​,​ uri​,​ ​new​ ​AkaURLStreamHandler​());

// HttpURLConnection usage.

final​ ​String​ uri ​=​ ​"http://www.bestbuy.com/";

HtttpURLConnection​ urlConnection ​=​ ​null;
try​ {
 // AkaURLStreamHandler that instantiates an object of AkaURLConnection.

 URL url ​=​ ​new​ URL​(​null​,​ uri​,​ ​new​ ​AkaURLStreamHandler​());
 urlConnection ​=​ ​(​HttpURLConnection​)​ url​.​openConnection​();
 ...

 // Download content using the InputStream

 InputStream​ inputStream ​=​ ​new​ ​BufferedInputStream​(​urlConnection​.​getInputStream​());
 ...

 // Close the stream once done with the download.

 inputStream​.​close​();
 }​ ​catch​ ​(​IOException​ e​)​ {
 e​.​printStackTrace​();
 }​ ​finally​ {
 ​// Make sure to call HttpURLConnection#disconnect() to release resources and collect stats.
 if​ ​(​urlConnection ​!=​ ​null​)​ {
 urlConnection​.​disconnect​();
 }

 }

Here is a side-by-side comparison of API usage for HttpURLConnection

Before After

final​ ​String​ uri ​=​ ​"http://www.bestbuy.com/";

HttpURLConnection​ urlConnection ​=​ ​null;
try​ {
URL url ​=​ ​new​ URL​(​uri​);

urlConnection ​=​ ​(​HttpURLConnection​)
url​.​openConnection​();
 ...

InputStream​ inputStream ​=​ ​new
BufferedInputStream​(​urlConnection​.​getInputStr
eam​());
 ...

inputStream​.​close​();
}​ ​catch​ ​(​IOException​ e​)​ {

e​.​printStackTrace​();
}​ ​finally​ {
if​ ​(​urlConnection ​!=​ ​null​)​ {

urlConnection​.​disconnect​();
}

}

final​ ​String​ uri ​=​ ​"http://www.bestbuy.com/";

HttpURLConnection​ urlConnection ​=​ ​null;
try​ {
URL url ​=​ ​new​ URL​(null, ​uri, new
AkaURLStreamHandler()​);

urlConnection ​=​ ​(​HttpURLConnection​)
url​.​openConnection​();
 ...

InputStream​ inputStream ​=​ ​new
BufferedInputStream​(​urlConnection​.​getInputStr
eam​());
 ...

inputStream​.​close​();
}​ ​catch​ ​(​IOException​ e​)​ {

e​.​printStackTrace​();
}​ ​finally​ {
if​ ​(​urlConnection ​!=​ ​null​)​ {

urlConnection​.​disconnect​();
}

}

For all https requests use ​AkaURLStreamHandler​(true)

final​ ​String​ uri ​=​ ​"https://www.akamai.com/";

HttpsURLConnection​ urlConnection ​=​ ​null;
try​ {
 // AkaURLStreamHandler(true) that instantiates an object of AkaSURLConnection.

 URL url ​=​ ​new​ URL​(​null​,​ uri​,​ ​new​ ​AkaURLStreamHandler​(true));
 urlConnection ​=​ ​(​HttpsURLConnection​)​ url​.​openConnection​();

 // set a custom ssl socket factory if needed.

 urlconnection.setSSLSocketFactory(customFactory);

 ...

 // Download content using the InputStream

 InputStream​ inputStream ​=​ ​new​ ​BufferedInputStream​(​urlConnection​.​getInputStream​());
 ...

 // Close the stream once done with the download.

 inputStream​.​close​();
 }​ ​catch​ ​(​IOException​ e​)​ {
 e​.​printStackTrace​();
 }​ ​finally​ {
 ​// Make sure to call HttpsURLConnection#disconnect() to release resources and collect
stats.

 if​ ​(​urlConnection ​!=​ ​null​)​ {
 urlConnection​.​disconnect​();
 }

 }

5.9 Cache-Control request parameters

AkaURLConnection ensures delivery of fresh content. Content is either served from the cache or
from the network transparently.​ In certain cases, it may be desirable to override this behavior. For
ex - In case of poor connectivity, a caller may be okay to use stale responses for a particular
request(s). Or in certain cases, a caller may want the content that’s being served (in case of
cached content) to be revalidated by origin server by controlling its expiry or forcing a
revalidation in a particular scenario such as a certain time of day.
AkaURLConnection provides following API for this:

/**
*
* ​@param ​field ​non-null key
* ​@param ​value ​non-null value​

* SDK cache behavior can be controlled with use of following key-value pairs. ​

*
* Pragma:no-cache: Forces SDK to revalidate cached response.​

* Cache-Control:no-cache: Same as Pragma:no-cache.​

* Cache-Control:max-age='x': Forces SDK to select expiry for the content as Min('x', expiry calculated from
response headers)​

* Cache-Control:max-stale='x': If assigned a value, then the client is willing to accept a response that has
exceeded its expiration time by no more than the specified number of seconds. If present and no value is assigned
to max-stale, then the client is willing to accept a stale response of any age. Developers can use
* this under poor network conditions to serve stale responses.​

*
* Note: max-age/max-stale is ignored if no-cache is present.
*
*
*/
@Override
public void ​setRequestProperty(String field, String value);

6 QUIC Library Integration
MAP sdk has a capability to accelerate requests using chromium’s ​QUIC protocol​. If the
configuration to enable quic from the portal is turned on, all the requests by default will try to use
QUIC and if the server supports QUIC the response is served over QUIC else it will fall back to
HTTP. To enable this capability on the app, an additional aar file needs to be included as below

● Download the SDK and unzip it.
● In a file explorer (​not​ Android Studio), drag the unzipped akamai-cronet-lib-release-version.aar

file into the /app/libs directory in your project’s root directory.
● In Android Studio, edit the build.gradle file in the ​app​ directory (​not the one in the root folder ​) and

edit the dependencies sub-section to include .AAR file and following library

dependencies {

 implementation(​name​:​'akamai-cronet-lib-release-<version>'​, ​ext​:​'aar'​)
 ...

}

If you build infrastructure of your application is not using Java 8, the code below needs to be added to the
build.gradle file

android {

 compileOptions {

 sourceCompatibility ​1.8
 ​targetCompatibility ​1.8

https://www.chromium.org/quic

}

}

ABI Management for different architectures
Akamai cronet aar file is around 4.8MB and includes supports two different architectures

● armeabi-v7a
● arm64-v8a

As the size of SDK is always a priority, these architectures can be selectively filtered based on
the target sdk version and audience of the host application using abiFilters in the build.gradle
file. For instance, just including armeabi-v7a is enough to support majority of the devices,except
v64 devices. So based on audience of the host application these architecture can be selectively
chosen.

Example : just including “armeabi-v7a” architecture (Recommended for most cases)

android{

defaultConfig{ ndk{ abiFilters ​"armeabi-v7a"​ } }
}

7 BROTLI Library Integration
MAP sdk has a capability to accelerate requests using Brotli compression. Brotli provides a
much denser compression of the data when compared to gzip. If the configuration to enable
brotli from the portal is turned on, all the requests by default will try to use brotli encoding by
including it in the ‘accept-encoding’ header. If the server supports brotli and responds with a
brotli encoded stream, it will be decoded by the sdk and provided to the application. In case the
requirements are not met, default ‘gzip’ encoding is used. To enable this capability on the app,
an additional aar file needs to be included as below

● Download the SDK and unzip it.
● In a file explorer (​not​ Android Studio), drag the unzipped akamai-brotli-lib-release-<version>.aar

file into the /app/libs directory in your project’s root directory.
● In Android Studio, edit the build.gradle file in the ​app​ directory (​not the one in the root folder ​) and

edit the dependencies sub-section to include .AAR file and following library

dependencies {

 implementation(​name​:​'akamai-brotli-lib-release-version'​, ​ext​:​'aar'​)
 ...

}

8 mPulse Library Integration
MAP SDK has the capability to send mPulse beacons for real-time performance monitoring.
This feature can be enabled through the MAP portal - a mPulse license key(pre-configured on
mPulse Dashboard) will be needed. If enabled MAP SDK will initialize mPulse and send
beacons to soasta dashboard for real time monitoring. To integrate this feature

● Download the SDK and unzip it.
● In a file explorer (not Android Studio), drag the unzipped

mpulse-android-release-<version>.aar file into the /app/libs directory in your project’s
root directory.

● In Android Studio, edit the build.gradle file in the app directory (not the one in the root
folder) and edit the dependencies sub-section to include .aar file and following library

dependencies {

 implementation (​name​:​'mpulse-android-release-<version>'​, ​ext​:​'aar'​)
 ...

}

For more information on mPulse integration, refer ​https://docs.soasta.com/beacon-api/#android​.
The initialization of mPulse is already taken care by MAP SDK.

MAP SDK can identify the mPulse Custom Metric based on the URL patterns defined by the
client and report this to mPulse portal. The client needs to configure the Custom Metric in the
mPulse portal and then define the URL patterns associated with the metric in
android_sdk_init.xml file (refer section 3.2 for more details about this file). An example URL
pattern definition is as below.

 <com_akamai_sdk_custom_metric name="Shopping Cart">

 <com_akamai_sdk_url_pattern pattern="​http://www.akamai.com/cart/"/​>
 <com_akamai_sdk_url_pattern pattern="​https://www.akamai.com/cart/​"/​>
 </com_akamai_sdk_custom_metric>

 <com_akamai_sdk_custom_metric name="Check Out">

 <com_akamai_sdk_url_pattern pattern="​http://www.akamai.com/checkout"/​>
 <com_akamai_sdk_url_pattern pattern="​https://www.akamai.com/checkout"/​>
 </com_akamai_sdk_custom_metric>

https://docs.soasta.com/beacon-api/#android
http://www.akamai.com/cart/%22/
http://www.akamai.com/cart/%22/
http://www.ebay.com/cart/%22/
http://www.akamai.com/checkout%22/
http://www.akamai.com/checkout%22/

Additionally, MAP SDK also implicitly set mPulse Page View Groups and Custom Timer(
predefined in the mPulse portal) when ​vocService.startEvent(“<Name>”) ​is called. The
client can reset the mPulse View Group and custom Timer on calling
vocService.stopEvent(“<Name>”)​. All requests within the startEvent and stopEvent will be
identified with “<Name>” page view group and a custom timer with name “<Name>”) will be
triggered.

10 Managing Cookies
With a multitude of third party libraries available for network request and image downloading
(such as OkHttp, Picasso, Glide) as well as the combined use of android WebView and
HttpUrlConnection, managing cookies becomes an essential part of any app. Please note that if
the java.net.CookieManager is already setup in the app, there is nothing else to do and this
section may be skipped. This part serves as a general guidance for managing the cookies for
MAP-SDK use. The code snippets here are for example only.

● The MAP SDK uses android HttpUrlConnection to send the request. The HttpUrlConnection
uses java.net.CookieManager to get and save the cookies for a session. Once the cookie
manager is created, the cookies are automatically saved from the response and appended to
the subsequent requests (applying all the rules for appending the cookie). Here is what the app
can do to create a new cookie manager.

CookieManager cookieManager = ​new ​CookieManager();
cookieManager.setCookiePolicy(CookiePolicy.​ACCEPT_ALL​);
CookieHandler.setDefault(cookieManager);

This cookieManager will by default use an in memory cookie store. Optionally, the cookie
manager can be created with a custom implementation of the Cookie store that would persist
the cookies across app restarts, for example.

CookieManager cookieManager = ​new ​CookieManager(new CustomCookieStore(),
CookiePolicy.​ACCEPT_ALL​);

● The OkHttp client uses a CookieJar. In case the app wants to continue to use the CookieJar, it
can be created in the following way to make the cookies also available to the
HttpUrlConnection.

CookieManager cookieManager = new CookieManager();

cookieManager.setCookiePolicy(CookiePolicy.ACCEPT_ALL);

CookieHandler.setDefault(cookieManager);

CookieJar cookieJar = new JavaNetCookieJar(cookieManager);

dependencies {

 ​implementation "com.squareup.okhttp3:okhttp-urlconnection:3.10.0"
 ...

}

Any cookies now added to cookie jar will also be accessible to the MAP-SDK.

● Syncing cookies between the web views and the httpUrlConnection requests: The cookies for
HttpUrlConnection are maintained by java.net.CookieManager while the cookies for Webview
are maintained by android.webkit.CookieManager. If the app is using a combination of Webview
and Net (HttpUrlConnection) requests, the app needs to manually synchronize the cookies
between the two managers.

Here is a code example to synchronize the cookies from java.net.CookieManager to
android.webkit.CookieManager for a request to ‘uri’ after getting a response.

CookieHandler handler = CookieHandler.getDefault();

Map<String, List<String>> cookie = handler.get(uri, responseHeaders);

android.webkit.CookieManager.getInstance().setCookie(uri, cookie.get("Cookie").get(i));

● Picasso, Volley and Glide: These packages don’t have any specific cookie handling. Once the
cookie Manager is created and set as in section 1, the intercepted requests by MAP-SDK will
save and append the cookies.

9 Appendix - Requirements and Dependencies

9.1 Background Execution

The MAP SDK downloads any prepositioned content while the application is running . Various

factors determine when to start downloading, how much to download, and when to pause

downloads. Influencing factors include the state of the mobile network and the quality state of

the provider network.

When your app is in the foreground, downloads are happening without any need for changes to

your code. MAP SDK also downloads content(marked for prepositioned) in background

triggered by GCM push notifications. There is no additional certificate configuration needed for

push notifications to work

9.2 SDK Events

The client app can listen to sdk background events (not normally needed) status by registering

a BroadCastReceiver with filter set to "com.akamai.android.sdk.ACTION_VOC_STATUS" .

Example in Client Manifest

<​application
….

 <receiver android:name={ApplicationId}.MyMapBroadcastReceiver">

 <intent-filter>

 <action android:name="com.akamai.android.sdk.ACTION_VOC_STATUS" />

 <category android:name="{ApplicationId}" />

 </intent-filter>

</receiver>

….</​application​>

The client app can then extend the com.akamai.android.sdk.​VocStatusReceiver

API and override methods to listen to different status updates like ​ sdk sync start, cache sync
done

public class ​MyMapBroadcastReceiver​ ​extends ​VocStatusReceiver {

 ​@Override

 ​protected void ​onCacheSynchStart(Context context) {

 // Called on any background or foreground sync

 // Here you can set any prepositioning specific parameters

 // if needed ​VocService.setCustomConnectionParameters​ (section 5.6)

 }

}

9.3 SDK Debugging

Android: On Android Logs are tagged with AkaSDKLogger for map-sdk

Common Log Lines for tracking activity:

Initialization Logs

06-01 16:59:07.424 22964-22997/example.com.vocaccelerator E/AkaSDKLogger: AnaCacheService:

postStatusToServer: not registered

Check akamai_sdk_init.xml existing in res/xml folder and licenseKey is added , and segments subscribed

are added in provided within the tags

<​com_akamai_sdk_license_key​>

</​com_akamai_sdk_license_key​>

E/AkaSDKLogger: registerIfNeeded: Couldn't find resource file for meta-data key

com.akamai.android.sdk!

Missing akamai_sdk_init in res/xml and reference in the AndroidManifest.xml to the init file

<meta-data

 android:name="com.akamai.android.sdk"

 android:resource="@xml/akamai_sdk_init" />

Content Logs

Content served from Cache

○ D/AkaSDKLogger: D/AkaSDKLogger: AkaURLConnection: Stats: URL:

https://www.akamai.com/, Type: CACHE_FETCH_ADHOC, Connection: cellular/LTE,

RespCode: 200, ContentLength: 251167, StartTime: 1523471307223, Duration: 55, Ttfb:

6

Content served from Network

○ D/AkaSDKLogger: D/AkaSDKLogger: AkaURLConnection: Stats: URL:

https://www.akamai.com/, Type: CACHE_MISS, Connection: cellular/LTE, RespCode:

200, ContentLength: 251167, StartTime: 1523471307223, Duration: 55, Ttfb: 6

On receiving Push notification

○ 04-11 14:59:36.651 31167-31192/example.com.vocaccelerator D/AkaSDKLogger:

AnaCacheService: com.akamai.anaina.PREPARE_SYNC

Upload Analytics

○ 06-01 16:35:07.821 19777-19803/example.com.vocaccelerator D/AkaSDKLogger:

RestWrapper: sendWebAccAnalytics: 200

Prepositioning triggered

○ 06-01 16:46:23.170 21803-21842/example.com.vocaccelerator D/AkaSDKLogger:

AnaWebContentDownloader: WebContent: Queued for download 11, policy 0

9.4 Upgrading from a previous SDK version to 20.1.1 or later

The MAP SDK version 20.1.1 and later has been updated to use Firebase Messaging as Google has

deprecated GCM. If you are updating from a previous version of SDK to version 20.1.1 or later, please

make the following change to the app’s build.gradle file. Remove the GCM dependency and add the

FCM as suggested below. For additional information on getting background notifications working for

prepositioning follow section 4.3

useLibrary ​'org.apache.http.legacy'

dependencies {

 i​mplementation ​fileTree(dir: 'libs', include: ['*.jar'])
 ​implementation ​'com.google.android.gms:play-services-gcm:10.2.1'
 implementation ​'com.google.firebase:firebase-messaging:17.3.4'
 implementation ​'com.android.support:support-v4:26.1.0'
 implementation ​(name:'map-sdk-version', ext:'aar')
}

