

Mobile Accelerator SDK

iOS Integration Guide

February 20, 2019

1

1 Summary

2 Introduction

3 Getting Started

3.1 Requirements and Dependencies

3.2 SDK Size

3.3 Installing the iOS SDK

3.3.1 CocoaPods

3.3.2 Install Manually

4 Integrating with your iOS Application

4.1 Including the SDK

4.2 Initialization

4.3 Registration

4.4 Updating Segment Subscriptions

4.5 SDK Delegate

5 API Reference

5.1 Prepositioned Content

5.2 NSURLConnection

5.3 UIWebView

5.4 NSURLSession

5.5 Custom Event Tracking

5.6 Network Aware Experience

5.7 Cache-Control Request Parameters

5.8 Debugging Options

5.9 Custom TLS Certificate Handling

6 Appendix - Requirements and Dependencies

6.1 Background Execution

6.2 Remote Notifications

6.3 Bitcode

6.4 App Transport Security

6.5 Disabling Redirect Behavior

2

1 Summary

This document details the process of accelerating Web traffic by integrating the Mobile Application

Performance (MAP) SDK with your iOS application.

2 Introduction

The MAP SDK prepositions Web content onto a mobile device based on subscribed content groups

(“segments”) and policies set up between the client and server. Acceleration and statistics collection are

handled internally by the SDK. The MAP SDK API offers configuration options such as defining user

subscriptions and control over which connections receive acceleration.

The API also provides developers access to real-time network conditions. This information can be used

to augment the user experience by taking necessary actions based on network state.

API calls are available for logging user events to the server. These can be used to associate network

traffic originating from the app with events such as tapping a button.

3 Getting Started

The iOS platform provides several ways to request network resources via HTTP and HTTPS. The MAP SDK

accelerates both of the direct download approaches, NSURLSession and NSURLConnection. It also

enhances Web pages loaded through UIWebView. WKWebView and SFSafariViewController are run by

the OS outside of the app process, and are not enhanced by the SDK at this time.

 Request Class Request Type Requires Extra Setup?

NSURLConnection Individual file NO

NSURLSession Individual file YES for custom sessions.

Shared session is automatic.

3

UIWebView Web view NO

Table 1 - URL Request Types

NSURLConnection and UIWebView are automatically accelerated once the SDK is installed. Each

NSURLSession using a custom configuration requires a configuration call. Each approach is covered in

the API Reference section.

The MAP SDK library also collects network-related statistics while serving content. These include HTTP

time to first byte, request size, response size, duration, and others. These stats are periodically sent to

the MAP SDK server for access via the Web portal.

3.1 Requirements and Dependencies

The MAP SDK requires iOS 8 or higher.

A MAP SDK license key is required for registration.

The application’s bundle ID (​Project​ → choose target → ​General​ → ​Identity​ → ​Bundle Identifier​) must

match the name provided on the MAP Web portal SDK license page. The portal field for this is “iOS

Application ID.”

In order to preposition content, the app must enable Background Execution and Remote Notifications.

See the appendix for guidance.

3.2 SDK Size

The SDK consists of a main “VocSdk” framework and two optional frameworks. These are all fat

binaries, meaning they contain compiled code for several architectures. Apple delivers the appropriate

architecture for the end user device. Approximate end-user sizes are shown in the arm64 and armv7

columns below.

 Fat size in SDK (MB) arm64 size
on device (MB)

armv7 size
on device (MB)

4

VocSdk (MAP SDK core) 21.0 (includes bitcode) 1.8 1.6

mPulse (optional) 141.0 (includes bitcode) 2.8 2.3

Cronet (optional) 17.0 (no bitcode) 4.2 3.9

Total download size 1.8-8.8 depending on
optional frameworks

1.6-7.8 depending on
optional frameworks

Table 2 - Framework sizes as of MAP SDK 20.1.2

3.3 Installing the iOS SDK

3.3.1 CocoaPods

The MAP SDK for iOS is available as a ​CocoaPod​. CocoaPods is an open source dependency manager for

Swift and Objective-C Cocoa projects. Refer to the ​CocoaPods Getting Started guide​ if you are unfamiliar

with CocoaPods.

1. Once you have a Podfile set up, edit it to add the MAP SDK framework. Here is an example:

target 'YOUR_APPLICATION_TARGET_NAME_HERE' do

 use_frameworks!

 pod 'AkamaiMAP'

end

a. Cronet is an optional dependency and it can be included with the MAP SDK framework.

Here is an example:

target 'YOUR_APPLICATION_TARGET_NAME_HERE' do

 use_frameworks!

 pod 'AkamaiMAP'

 pod 'AkamaiMAP/Cronet'

end

2. To install the MAP SDK framework, open terminal, go to your project directory, and run the pod

install command:

pod install

5

https://cocoapods.org/
https://guides.cocoapods.org/using/getting-started.html

3. Close Xcode, and then open your project .xcworkspace file generated by CocoaPods. From this

time onwards, you must use the .xcworkspace file.

3.3.2 Install Manually

1. Download and unzip the MAP SDK zip archive.

2. Add the framework to your Xcode project.

a. Open your project in Xcode.

b. Open the File menu.

c. Click Add Files to <project>.

d. Choose VocSdk.framework.

e. Repeat these steps for Cronet.framework if using QUIC.

3. Link the SDK to your project.

a. Open project settings by clicking the project name in the Project navigator.

b. Click the General tab.

c. Under Embedded Binaries, click + and choose VocSdk.framework.

d. Click Add.

e. Repeat these steps for Cronet.framework if using it.

4. If using mPulse, then follow the steps below:

a. Unzip MPulse.framework.

b. Drag and drop the framework into your Xcode project.

c. Navigate to the Build Settings section of your target and add the following (if not already

present) to the Other Linker Flags setting: -ObjC

d. Navigate to the Build Phases section of your target and add the following Libraries (if not

already present) to the Link Binary With Libraries step:

i. CoreTelephony.framework

6

ii. CoreLocation.framework

iii. SystemConfiguration.framework

iv. libc++.dylib or libc++.tdb

v. libz.dylib or libz.tdb

e. If using mPulse from Swift, you must add the following line to the ​Objective-C bridging

header​ ([project name]-Bridging-Header.h): #import "MPulse/MPulse.h

5. Note: If you are using frameworks with CocoaPods in your project this step is not needed since

CocoaPods adds a similar build step to your target.

VocSdk.framework, mpulse.framework, and Cronet.framework are “fat” frameworks -- i.e. they

include code for both simulator and iPhone/iPad devices. Applications submitted to the Apple

app store are rejected if they include code for simulator. To remove simulator code from builds

for the app store you need to add a build step to your app target. This build step will process

only when the build configuration is set to “Release” (e.g., when you archive a build). The script

will locate the directory where your executable was built. It will look at each embedded

framework and modify it by extracting the supported build architectures for your run (arm7,

arm64, etc.) and replacing the SDK framework so that it contains only the slices for those

particular architectures.

a. In your Project Settings, click on Build Phases.

b. Click the “+” to add a new build phase, and choose “New Run Script Phase.”

c. Drag this build phase to be the last and make sure it happens after Embed Frameworks

build phase.

d. Optionally, single-click its name and rename it to “strip frameworks”.

e. Click the arrow to expand the “strip frameworks” row.

f. Leave the default shell setting of /bin/sh.

g. Add the following text to the script area. The strip_frameworks.sh path is relative to

your .xcodeproj file and may need modification depending on where you unzipped it

(map_sdk in this example).

7

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/MixandMatch.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/MixandMatch.html

.​/map_sdk/​strip_frameworks​.​sh

In this example, the folder structure is as follows:

/myproject/myproject.xcodeproj

/myproject/map_sdk/strip_frameworks.sh

/myproject/map_sdk/VocSdk.framework

The final build phase should look like this:

8

4 Integrating with your iOS Application

4.1 Including the SDK

The SDK is made available to your code through the AkaWebAccelerator protocol. Import the VocSdk

header in any class files where the SDK is required. Also define a single AkaWebAccelerator object for

your app. Create your VocService object in the app delegate to make the SDK available early in the app

lifecycle and to simplify access to the VocService from other classes.

#import <VocSdk/VocSdk.h>

@property​ ​(​strong​,​ nonatomic​)​ id​<​AkaWebAccelerator​>​ akaService;

4.2 Initialization

The SDK is initialized by the VocServiceFactory call

createAkaWebAccelerationWithDelegate:delegateQueue:options:error:. Initialization and registration

should take place at startup to ensure that acceleration is available as early as possible. The

recommended place for this is in AppDelegate’s application:didFinishLaunchingWithOptions:. The

create call inputs a reference to the SDK delegate (see ​SDK Delegate​) as well as a configuration options

dictionary. The SDK delegate is the class you designate to respond to SDK activity.

Registration requires a valid SDK license and an array of segment names for which to download content.

Each segment is a unique string representing a particular content set such as “daily deals,” and is

created during the content ingest phase. The name may be any string that does not reveal personal

information. Segments passed during the register call are subscribed on initial registration; this saves

the step of subscribing later. The array may be empty. Further subscriptions may be added or removed

later via the subscribeSegments call.

It is strongly recommended that PII (Personally Identifiable Information) not be directly used in naming

your content segments.

9

During initialization, the SDK will attempt to register using a license key and an optional array of

segments, if found in one of three places:

1. [​preferred approach​] The Info.plist for the app, using the key “com.akamai.vocsdk.” If found,

the dictionary pointed to by this entry is parsed for the “license” key and “segments” and, if

found, the values associated with those dictionary entries will be used as the license key and

segments for registration purposes:

<?​xml version​=​"1.0"​ encoding​=​"UTF-8"​?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist​ ​version​=​"1.0">

<dict>

<key>​CFBundleDevelopmentRegion​</key>

<string>​en​</string>

<key>​CFBundleDisplayName​</key>

<string>​MAPSdkExample​</string>

<!-- ... other Info.plist keys omitted ... -->

<key>​com.akamai​</key>

<dict>

 ​<key>​vocsdk​</key>

 ​<dict>

<key>​license​</key>

<string>​your_license_key_goes_here​</string>

 ​<key>​segments​</key>

 ​<array>

 ​<string>​segment_1​</string>

 ​<string>​segment_2​</string>

 ​</array>

10

 ​</dict>

</dict>

</dict>

</plist>

2. [​option 2​] A configuration file for the app, identified by the value in the Info.plist key

“com.akamai.vocsdk.config.file.” The value is a path to a config file, relative to the main bundle

for your app. This file may be a property list (similar to the Info.plist for your app):

<?​xml version​=​"1.0"​ encoding​=​"UTF-8"​?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist​ ​version​=​"1.0">

<dict>

<key>​license​</key>

<string>​your_license_key_goes_here​</string>

 <key>​segments​</key>

 <array>

 <string>​segment_1​</string>

 <string>​segment_2​</string>

 </array>

</dict>

</plist>

Alternatively, the config file may be a JSON file, as shown in the example below:

{

 ​"license"​ ​:​ ​"​your_license_key_goes_here​",

 ​"segments"​ ​:​ [

 ​"​segment_1​",

11

 ​"​Segment_2​"

 ​]
}

3. [​option 3​] The options dictionary passed to the

createServiceWithDelegate:delegateQueue:options:error: method, using the dictionary keys

“license” and “segments”:

-​ ​(​BOOL​)​application​:(​UIApplication​ ​*)​application

didFinishLaunchingWithOptions​:(​NSDictionary​ ​*)​launchOptions

{

 ​NSError​ ​*​error ​=​ ​nil;

 ​NSDictionary​ ​*​options ​=​ ​@{

 ​@​"license"​ ​:​ ​@​"your_license_key_goes_here",

 ​@​"segments"​ ​:​ ​@[​ ​@​"segment_1"​,​ ​@​"segment_2"​ ​],

 ​};

 ​self​.​akaService ​=​ ​[​VocServiceFactory​ createAkaWebAcceleratorWithDelegate​:​self

delegateQueue​:[​NSOperationQueue​ mainQueue​]

 options​:​options

 error​:&​error​];

 ​if​ ​(!​self​.​akaService​)​ ​{

 ​// error handling - could not start service

 ​return​ NO​;

 }

 ​// app initialized

 ​return​ YES​;

}

Options passed in the options parameter dictionary take precedence over Info.plist options and file

options in the following order of precedence:

1. The options dictionary

2. The Info.plist

12

3. Configuration property list file or JSON file in bundle

4.3 Registration

Registration is a one-time event that activates the MAP SDK service with a particular license key and an

array of segments. The key is linked to prepositioned content, generation of usage statistics, and other

SDK capabilities. It is required for most SDK features so registration occurs early within the application.

The service object returned from initialization (see ​Initialization​) has a state property that indicates

whether registration already succeeded on this device. If vocService.state is equal to

VOCServiceStateNotRegistered then registration may have failed, or may not have been attempted for

some reason (e.g., there is no network connectivity). The SDK automatically attempts to re-register on

unsuccessful registration due to device failures and server errors.

Once registration is successful, the SDK calls VocServiceDelegate’s didRegister:. This can be used to

report or log any problems starting the SDK. This callback is made every time the app starts. The first

time the app registers, it is called in response to registerWithLicense. After that, the app is already

registered so didRegister: is called in response to createServiceWithDelegate.

The service delegate also receives didInitialize: to indicate that all services are actively running.

4.4 Updating Segment Subscriptions

The list of subscribed segments may be changed any time after registration. Pass a set of segment

names to the SDK service call subscribeSegments. This immediately initiates a check for changes to

subscribed content. Unsubscribed files are purged from cache, unchanged files remain in cache, and

new files are queued to begin downloading.

NSSet​ ​*​segments ​=​ ​[​NSSet​ setWithArray​:@[@​"basics"​,​ ​@​"daily-deals"​]];

[​appDelegate​.​akaService subscribeSegments​:​segments​];

To unsubscribe from a segment, pass the whole list of subscribed segments excluding the one(s) you

want to remove. An empty set is used to unsubscribe from all segments.

13

For example, if you are subscribed to segments A, B, and C and you want to remove segment B, call

subscribeSegments with A and C. Since B is no longer subscribed, its contents will be purged. Files are

kept in cache if they remain in at least one subscribed segment.

4.5 SDK Delegate

The SDK notifies your app of various events throughout its life cycle. Messages are sent asynchronously

to an SDK delegate in your code that implements the VocServiceDelegate protocol. All of the delegate

methods are optional.

-​ ​(​void​)​ vocService​:(​nonnull ​VocService​ ​*)​vocService didBecomeNotRegistered​:(​nonnull
NSDictionary​ ​*)​info​;
-​ ​(​void​)​ vocService​:(​nonnull ​VocService​ ​*)​vocService didFailToRegister​:(​nonnull ​NSError
*)​error​;
-​ ​(​void​)​ vocService​:(​nonnull ​VocService​ ​*)​vocService didRegister​:(​nonnull ​NSDictionary
*)​info​;
-​ ​(​void​)​ vocService​:(​nonnull ​VocService​ ​*)​vocService didInitialize​:(​nonnull ​NSDictionary
*)​info​;
-​ ​(​void​)​ vocService​:(​nonnull ​VocService​ ​*)​vocService

didReceiveChallengeForRequest​:(​nonnull ​NSURLRequest​ ​*)​originalRequest
currentRequest​:(​nonnull ​NSURLRequest​ ​*)​currentRequest
challenge​:(​nonnull ​NSURLAuthenticationChallenge​ ​*)​challenge
modifiedTrust​:(​nullable ​SecTrustRef​)​ modifiedTrust
completion​:(​nonnull ​void​ ​(^)(​NSURLSessionAuthChallengeDisposition​ disposition​,

NSURLCredential​ ​*​ ​_Nullable​ credential​))​completion​;
-​ ​(​void​)​ vocService​:(​nonnull ​VocService​ ​*)​vocService itemsDiscovered​:(​nonnull ​NSArray
*)​items​;
-​ ​(​void​)​ vocService​:(​nonnull ​VocService​ ​*)​vocService itemsStartDownloading​:(​nonnull ​NSArray
*)​items​;
-​ ​(​void​)​ vocService​:(​nonnull ​VocService​ ​*)​vocService itemsDownloaded​:(​nonnull ​NSArray
*)​items​;
-​ ​(​void​)​ vocService​:(​nonnull ​VocService​ ​*)​vocService itemsEvicted​:(​nonnull ​NSArray​ ​*)​items;

The SDK delegate is set in the SDK initialization call. Typically, this is the app delegate since its lifetime

will span that of the SDK, from registration until shutdown. Define your app delegate as follows to

implement the SDK delegate protocol.

14

@interface​ ​AppDelegate​ ​:​ ​UIResponder​ ​<​UIApplicationDelegate​,​ ​VocServiceDelegate>

5 API Reference

5.1 Prepositioned Content

Prepositioned content begins loading onto the device as soon as the user registers with user segments,

or registers and later joins user segments. This happens automatically while your program runs.

Network requests are served from matching prepositioned content. If the content is not prepositioned

then it will be fetched from the network. Your app can listen for the AkaService -didInitialize: callback to

know when the SDK has begun handling requests. This is a one-time event that happens after creating

the service.

5.2 NSURLConnection

Requests using NSURLConnection will take advantage of preloaded content without any modifications.

For example, an asynchronous NSURLConnection can be created as before and will see the benefits of

the SDK’s acceleration.

NSURL ​*​requestURL ​=​ ​[​NSURL ​URLWithString​:@​"​https://www.akamai.com​"​];
NSURLRequest​ ​*​request ​=​ ​[​NSURLRequest​ requestWithURL​:​requestURL​];
NSURLConnection​ ​*​connection ​=​ ​[[​NSURLConnection​ alloc​]​ initWithRequest​:​request
delegate​:​self​];
// Followed by the asynchronous response handlers: connection:didReceiveResponse:,

connection:didReceiveData:, etc.

Synchronous connections are similarly straightforward. No changes to the connection are required to

benefit from MAP SDK acceleration.

NSData​ ​*​data ​=​ ​[​NSURLConnection​ sendSynchronousRequest​:​request returningResponse​:&​response
error​:&​error​];

5.3 UIWebView

15

https://www.akamai.com/

UIWebView will also use prepositioned content automatically and without modification.

5.4 NSURLSession

NSURLSession may use either the shared app session or a custom configuration. The SDK automatically

accelerates the shared session, so a standard NSURLSession is accelerated by default:

NSURLSession​ ​*​session ​=​ ​[​NSURLSession​ sharedSession​];
NSURL ​*​requestURL ​=​ ​[​NSURL ​URLwithString​:@​"​http://www.akamai.com/​"​];
[[​session dataTaskWithURL​:​requestURL​]​ resume​];

Alternatively, an NSURLSession may be created with a custom configuration. The custom configuration

must be passed into the SDK for setup. Pass the configuration into the VocServiceFactory call

setupSessionConfiguration:.

NSURLSessionConfiguration​ ​*​sessionConfig ​=​ ​[​NSURLSessionConfiguration
defaultSessionConfiguration​];
// ... modify sessionConfig as required by the app ...

[​VocServiceFactory​ setupSessionConfiguration​:​sessionConfig​];​ ​// sessionConfig now uses SDK
acceleration

NSURLSession​ ​*​session ​=​ ​[​NSURLSession​ sessionWithConfiguration​:​sessionConfig ​delegate​:​self
delegateQueue​:​nil​];
NSURL ​*​requestURL ​=​ ​[​NSURL ​URLwithString​:@​"​http://www.akamai.com/​"​];
[[​session dataTaskWithURL​:​requestURL​]​ resume​];

5.5 Custom Event Tracking

Custom events are actions triggered by the user such as tapping a button or opening a particular screen.

These are defined by the developer. The SDK provides an API for logging them to the server and

optionally timing them.

Custom events are classified as timed or instantaneous. A timed event has associated start and end

points. The two endpoints are paired by calling startEvent: and stopEvent: with matching event names,

and the time between these endpoints is recorded. In addition to logging durations, timed events are

useful for monitoring the network activity between endpoints. For example, custom event starting and

stopping points can be recorded in-line with network activity and then reviewed from the Web portal.

16

http://www.akamai.com/
http://www.akamai.com/

Note that unrelated, asynchronous requests may be recorded during user events depending on your app

design.

If mPulse is enabled, MAP SDK will implicitly set an mPulse Page View Group when

startEvent(“<Name>”) is called. The client can reset the mPulse Page View Group by calling

stopEvent(“<Name>”).

Also, when startEvent and stopEvent identified with “<Name>” is called, a custom timer with name

“<Name>” and the same interval will be triggered. The custom timer has to be defined in the mPulse

portal.

[​akaService startEvent​:@​"Event name"​];
// activity

[​akaService stopEvent​:@​"Event name"​];

Instantaneous events are recorded in the server logs along with the time they were executed. They are

useful for recording a sequence of activities or to form a timeline of events. Note that instantaneous

events are in Tech Preview and are not yet displayed in the portal.

// instantaneous event

[​akaService logEvent​:@​"tapped home button"​];

MAP SDK can identify mPulse Custom Metrics based on the URL patterns defined by the client and

report this to the mPulse portal. The client needs to configure the Custom Metric in the mPulse portal

and then define the URL patterns associated with the metric in info.plist file (refer section 4.2 for more

details about this file). An example URL pattern definition is as below. ​Please ensure not to add any data

to the event name that has privacy implications.

17

<!-- ... other Info.plist header omitted ... -->

<key>​com.akamai​</key>
<dict>

 ​<key>​vocsdk​</key>
 ​<dict>
 <!-- ... other Info.plist keys omitted ... -->

 ​<key>​custom_metric​</key>
 ​<dict>
 ​<key>​ShoppingCart​</key>
 ​<array>
 ​<string>​https://www.companyA.com/cart/​</string>
 ​<string>​https://www.​companyB​.com/cart/​</string>
 ​</array>
 ​</dict>
 ​<key>​Checkout​</key>
 ​<array>
 ​<string>​https://www.companyA.com/checkout/​</string>
 ​<string>​https://www.​companyB​.com/checkout/​</string>
 ​</array>
 ​</dict>
 ​</dict>

</dict>

<!-- ... other Info.plist footer omitted ... -->

5.6 Network Aware Experience

The SDK provides API access to the client-side network quality state in order to help developers augment

client requests. The return value is either excellent, good, or poor. The meaning of these values is

defined in the configuration portal.

The next example displays the latest network status and suggests how loading a Web site may be

tweaked as a result.

id​<​VocNetworkQuality​>​ networkQuality ​=​ appDelegate​().​akaService​.​networkQuality​;
switch​([​networkQuality qualityStatus​])​ ​{
 ​case​ ​VocNetworkQualityPoor​:
 ​[​self​ flashMessage​:​nil​ withTitle​:@​"Network Quality: Poor"​];
 ​// Exit download
 ​break​;
 ​case​ ​VocNetworkQualityGood​:
 ​[​self​ flashMessage​:​nil​ withTitle​:@​"Network Quality: Good"​];

18

http://www.akamai.com/cart/
http://www.ebay.com/cart/
http://www.akamai.com/cart/
http://www.ebay.com/cart/
http://www.akamai.com/cart/
http://www.ebay.com/cart/
http://www.akamai.com/cart/
http://www.ebay.com/cart/

 ​// Throttle download
 ​break​;
 ​case​ ​VocNetworkQualityExcellent​:
 ​[​self​ flashMessage​:​nil​ withTitle​:@​"Network Quality: Excellent"​];
 ​// Download content
 ​break​;
 ​case​ ​VocNetworkQualityUnknown​:
 ​[​self​ flashMessage​:​nil​ withTitle​:@​"Network Quality: Unknown"​];
 ​break​;
}

5.7 Cache-Control Request Parameters

Content is transparently served from either the server or the cache. The SDK ensures delivery of fresh

content by following content expiration headers, performing refreshes as necessary. In certain cases, it

may be desirable to override this behavior. For example, in case of poor connectivity, a caller may be

okay using stale responses for a particular request. In another case, a caller may decide to force cached

content to be revalidated by the origin server by controlling its expiry time and date.

These are standard HTTP parameters and may be added directly to the NSURLRequest:

NSMutableDictionary​ ​*​cacheControlHeaders ​=​ ​[​NSMutableDictionary​ ​new​];

cacheControlHeaders​[@​"Cache-Control"​]​ ​=​ ​@​"no-cache";

NSURL ​*​requestURL ​=​ ​[​NSURL ​URLWithString​:@​"https://www.akamai.com/some_image.jpg"​];

NSMutableURLRequest​ ​*​mRequest ​=​ ​[​NSMutableURLRequest​ requestWithURL​:​requestURL​];

[​mRequest setAllHTTPHeaderFields​:​cacheControlHeaders​];

NSURLSessionDataTask​ ​*​dataTask ​=​ ​[​self​.​mySession dataTaskWithRequest​:​ mRequest​];

[​dataTask resume​];

SDK cache behavior can be controlled with the following key-value pairs.

- Pragma:no-cache: Forces SDK to revalidate cached response.

- Cache-Control:no-cache: Same as Pragma:no-cache.

- Cache-Control:max-age='x': Forces SDK to select expiry for the content as Min('x', expiry

calculated from response headers).

19

- Cache-Control:max-stale='x': If assigned a value, the client is willing to accept a response that

has exceeded its expiration time by no more than the specified number of seconds. If present

and no value is assigned to max-stale, then the client is willing to accept a stale response of any

age. Developers can use this under poor network conditions to serve stale responses.

Note: max-age/max-stale is ignored if no-cache is present.

5.8 Debugging Options

SDK error messages are output to the Xcode console. Developers may print extended debug output to

the console with the following calls. -setDebugConsoleLog: enables real-time extended information,

while the other two calls, -printManifest and -printCurrentCapabilities, issue once-per-use information.

// enable real-time extended debug info to Xcode console

[​self​.​akaService setDebugConsoleLog​:​YES​];

// print subscribed segments, followed by each URL with its download status

[​self​.​akaService printManifest​];

// print last received SDK capabilities as configured through the portal

[​self​.​akaService printCurrentCapabilities​];

The -debugSendAnalytics call may be used to test that records are sent correctly from your app. It

immediately sends the latest batch of analytics from the device and reports to the developer console.

This results in additional uploads and should ​not​ be used in production code.

// Debug only - test analytics upload by sending outside of regular cycle

[​self​.​akaService debugSendAnalytics​];

Note: there will be a delay before analytics are aggregated for display on the portal.

5.9 Custom TLS Certificate Handling

20

MAP SDK uses the device’s default certificate chain to decide which servers to trust. There are cases

where an app needs to customize this behavior. These apps should implement the optional delegate

callback:

-​ ​(​void​)​ vocService​:(​nonnull ​VocService​ ​*)​vocService
didReceiveChallengeForRequest​:(​nonnull ​NSURLRequest​ ​*)​originalRequest
currentRequest​:(​nonnull ​NSURLRequest​ ​*)​currentRequest
challenge​:(​nonnull ​NSURLAuthenticationChallenge​ ​*)​challenge
modifiedTrust​:(​nullable ​SecTrustRef​)​ modifiedTrust
completion​:(​nonnull ​void​ ​(^)(​NSURLSessionAuthChallengeDisposition​ disposition​,

NSURLCredential​ ​*​ ​_Nullable​ credential​))​completion​;

This passes the app several pieces of information, with full details in the header file:

● the original request made by the app for identifying the URL in question

● the TLS server challenge

● the modified trust object that can be used for verification

● a completion block to be called with the result of the evaluation

The callback will be made for all requests and prepositioned downloads made through the SDK. Its

usage and parameters are fully explained in the header file.

6 Appendix - Requirements and Dependencies

6.1 Background Execution

The MAP SDK downloads content while the application is running. Various factors determine when to

start downloading, how much to download, and when to pause downloads. Influencing factors include

the state of the mobile network and the quality state of the provider network.

When your app is in the foreground, downloads are happening without any need for changes to your

code. For best results, the MAP SDK should also be able to download with your app in background.

There are two background execution modes that MAP SDK uses to download content. Enable both of

these modes from the Xcode target settings → Capabilities tab → Background Modes section:

● Remote notifications (remote-notification)

21

● Background fetch (fetch)

To enable background fetch in MAP SDK, you need to implement the system method

UIApplicationDelegate application:performFetchWithCompletionHandler:

and, from there, pass the message to the AkaService by calling

AkaService application:performFetchWithCompletionHandler:

Here is what that looks like:

-​ ​(​void​)​application​:(​UIApplication​ ​*)​application performFetchWithCompletionHandler​:(​void

(^)(​UIBackgroundFetchResult​ result​))​completionHandler

{

 ​if​ ​(![​self​.​akaService application​:​application

performFetchWithCompletionHandler​:​completionHandler​])​ ​{

 completionHandler​(​UIBackgroundFetchResultNoData​);

 ​}

}

6.2 Remote Notifications

To make remote notifications work in the MAP SDK you need to 1) enable the SDK backend to send push

notifications to your app, and 2) make the supporting code changes.

To enable the MAP SDK backend to send push notifications to your app, you need to upload your app

push certificate (APNS) to the MAP license management portal. The MAP backend must have a valid

APNS certificate for your app at all times otherwise push notifications will not work. If you revoke or

renew your certificate, make sure you upload it to the MAP license management portal. Instructions on

how to generate an APNS push certificate are available on Apple’s web site at:

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/Adding

Capabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW11

The first step for your app is to hand the push token to the SDK in the AppDelegate call

application:didRegisterForRemoteNotificationsWithDeviceToken:.

22

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW11
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW11

-​ ​(​void​)​application​:(​UIApplication​*)​application

didRegisterForRemoteNotificationsWithDeviceToken​:(​NSData​*)​deviceToken

{

 ​[​self​.​akaService setDevicePushToken​:​deviceToken​];

}

Also in your application delegate, implement the system method

UIApplicationDelegate application:didReceiveRemoteNotification:fetchCompletionHandler:

and pass this notification to the AkaService

AkaService application:didReceiveRemoteNotification:fetchCompletionHandler:

For example:

-​ ​(​void​)​application​:(​UIApplication​ ​*)​application didReceiveRemoteNotification​:(​NSDictionary

*)​userInfo fetchCompletionHandler​:(​void​ ​(^)(​UIBackgroundFetchResult

result​))​completionHandler

{

 ​if​ ​([​self​.​akaService application​:​application didReceiveRemoteNotification​:​userInfo

fetchCompletionHandler​:​completionHandler​])​ ​{

 ​// remote notification was for MAP SDK

 ​return​;

 }

 ​// remote notification is not for MAP SDK, handle remote notification

 completionHandler​(​UIBackgroundFetchResultNoData​);

}

6.3 Bitcode

The SDK is compiled with bitcode enabled so it will work in both bitcode- and non-bitcode apps.

23

6.4 App Transport Security

Starting in iOS 9.0, a new app security feature called App Transport Security (ATS) has been introduced

by Apple and it is enabled by default. With ATS enabled, connections must use secure HTTPS instead of

HTTP. Additionally, if the app contents that MAP SDK needs to download contain non-SSL items, those

downloads will fail. Application developers must ensure that either

1. [preferred] HTTPS is used for all content URLs, or

2. [insecure] ATS exceptions can be added for certain domains by adding the following

key-subkey to the app’s info.plist file

Optional ATS key to allow insecure (HTTP) content:

<key>​NSAppTransportSecurity​</key>
<dict>
 ​<key>​NSExceptionDomains​</key>
 ​<dict>
 <key>​your-domain.com​</key>
 <dict>
 <key>​NSIncludesSubdomains​</key>
 <true/>
 <key>​NSExceptionAllowsInsecureHTTPLoads​</key>
 <true/>
 </dict>
 <key>​your-other-domain.com​</key>
 <dict>
 <key>​NSIncludesSubdomains​</key>
 <true/>
 <key>​NSExceptionAllowsInsecureHTTPLoads​</key>
 <true/>
 </dict>
 ​</dict>
 ​</dict>

6.5 Disabling Redirect Behavior

MAP SDK automatically follows redirects. To instead return the redirect response to your app, set the

following MAP config property.

id​<​AkaWebAccelerator​>​ akaService;

akaService​.​config​.​autoFollowRedirects ​=​ NO;

24

Your app will then receive -didReceiveResponse: with the status code 301, 302, etc., and a location

header to which you can choose to create a new request.

This property supersedes the -willPerformHTTPRedirection: call, which should be omitted or return the

recommended request. Do not return nil even if you choose to not auto-redirect. MAP SDK will follow

or not follow based on the ​autoFollowRedirects​ property.

25

